ALPS 2 Tutorials:DWA-01 Revisiting MC05
Contents
Quantum phase transitions in the Bose-Hubbard model
As an example of the dwa QMC code we will study a quantum phase transition in the Bose-Hubbard mode.
Superfluid density in the Bose Hubbard model
Preparing and running the simulation from the command line
The parameter file parm1a sets up Monte Carlo simulations of the quantum Bose Hubbard model on a square lattice with 4x4 sites for a couple of hopping parameters (t=0.01, 0.02, ..., 0.1) using the dwa code.
LATTICE="square lattice"; L=4; MODEL="boson Hubbard"; Nmax = 2; U = 1.0; mu = 0.5; T = 0.1; SWEEPS=5000000; THERMALIZATION=100000; SKIP=5000; MEASURE[Winding Number]=1 { t=0.01; } { t=0.02; } { t=0.03; } { t=0.04; } { t=0.05; } { t=0.06; } { t=0.07; } { t=0.08; } { t=0.09; } { t=0.1; }
Using the standard sequence of commands you can run the simulation using the quantum dwa code
parameter2xml parm1a dwa --Tmin 5 --write-xml parm1a.in.xml
Preparing and running the simulation using Python
To set up and run the simulation in Python we use the script tutorial1a.py. The first parts of this script imports the required modules and then prepares the input files as a list of Python dictionaries:
import pyalps parms = [] for t in [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1]: parms.append( { 'LATTICE' : "square lattice", 'MODEL' : "boson Hubbard", 'T' : 0.1, 'L' : 4 , 't' : t , 'mu' : 0.5, 'U' : 1.0 , 'Nmax' : 2 , 'THERMALIZATION' : 100000, 'SWEEPS' : 5000000, 'SKIP' : 5000, 'MEASURE[Winding Number]' : 1 } )
We next convert this into a job file in XML format and run the worm simulation:
input_file = pyalps.writeInputFiles('parm1a', parms) res = pyalps.runApplication('dwa', input_file, Tmin=5, writexml=True)
We now have the same output files as in the command line version.
Evaluating the simulation and preparing plots using Python
To load the results and prepare plots we load the results from the output files and collect the magntization density as a function of magnetic field from all output files starting with parm1a. The script is again in tutorial1a.py
import matplotlib.pyplot as plt import pyalps.pyplot as aplt data = pyalps.loadMeasurements(pyalps.getResultFiles(prefix='parm1a'),'Stiffness') rhos = pyalps.collectXY(data,x='t',y='Stiffness') plt.figure() aplt.plot(rhos) plt.xlabel('Hopping $t/U$') plt.ylabel('Superfluid density $\\rho _s$') plt.show()