Difference between revisions of "ALPS 2 Tutorials:DWA-02 Density Profile"
From ALPS
(→Density profile) |
|||
Line 1: | Line 1: | ||
= Density profile = | = Density profile = | ||
− | + | As a second example of the dwa QMC code, we will study the density profile of an optical lattice in an harmonic trap which resembles the experiment | |
+ | |||
+ | == Mimicking the Bloch's experiment == | ||
+ | |||
+ | === Preparing and running the simulation from the command line === | ||
+ | |||
+ | The parameter file [http://alps.comp-phys.org/static/tutorials2.1.0/dwa-01-bosons/parm1a parm1a] sets up Monte Carlo simulations of the quantum Bose Hubbard model on a square lattice with 4x4 sites for a couple of hopping parameters (t=0.01, 0.02, ..., 0.1) using the dwa code. | ||
+ | |||
+ | LATTICE="inhomogeneous simple cubic lattice" | ||
+ | L=100 | ||
+ | |||
+ | MODEL='boson Hubbard" | ||
+ | Nmax=20 | ||
+ | |||
+ | t=1. | ||
+ | U=8.11 | ||
+ | mu="4.05 - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))" | ||
+ | |||
+ | THERMALIZATION=50000 | ||
+ | SWEEPS=200000 | ||
+ | SKIP=100 | ||
+ | |||
+ | { T=1. } | ||
+ | |||
+ | Using the standard sequence of commands you can run the simulation using the quantum dwa code | ||
+ | |||
+ | parameter2xml parm2a | ||
+ | dwa --Tmin 5 --write-xml parm2a.in.xml | ||
+ | |||
+ | === Preparing and running the simulation from Python === | ||
Step 1: The usual business | Step 1: The usual business |
Revision as of 00:12, 14 September 2013
Contents
Density profile
As a second example of the dwa QMC code, we will study the density profile of an optical lattice in an harmonic trap which resembles the experiment
Mimicking the Bloch's experiment
Preparing and running the simulation from the command line
The parameter file parm1a sets up Monte Carlo simulations of the quantum Bose Hubbard model on a square lattice with 4x4 sites for a couple of hopping parameters (t=0.01, 0.02, ..., 0.1) using the dwa code.
LATTICE="inhomogeneous simple cubic lattice" L=100 MODEL='boson Hubbard" Nmax=20 t=1. U=8.11 mu="4.05 - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))" THERMALIZATION=50000 SWEEPS=200000 SKIP=100 { T=1. }
Using the standard sequence of commands you can run the simulation using the quantum dwa code
parameter2xml parm2a dwa --Tmin 5 --write-xml parm2a.in.xml
Preparing and running the simulation from Python
Step 1: The usual business
import pyalps; import pyalps.dwa;
Step 2: Preparing the parameter file
tof_phase = pyalps.dwa.tofPhase(time_of_flight=15.5, wavelength=[843,765,765], mass=86.99) params=[] params.append( { 'LATTICE' : 'inhomogeneous simple cubic lattice' # Refer to <lattice.xml> from ALPS Lattice Library , 'MODEL' : 'boson Hubbard' # Refer to <model.xml> from ALPS Model Library , 'L' : 100 # Length aspect of lattice , 'Nmax' : 20 # Maximum number of bosons on each site , 't' : 1. # Hopping , 'U' : 8.11 # Onsite Interaction , 'T' : 1. # Temperature , 'mu_homogeneous' : 4.05 # Chemical potential (homogeneous) , 'mu' : 'mu_homogeneous - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))' , 'tof_phase' : str(tof_phase) , 'SWEEPS' : 100000 # Total number of sweeps , 'SKIP' : 100 # Number of sweeps before measurement (You don't need to measure too often!) } )
h5_infiles = pyalps.writeInputH5Files("parm9f",params);
or simply if existent,
h5_infiles = pyalps.getInputH5Files(prefix='parm9f');
Have a preliminary taste:
pyalps.runApplication('dwa', h5_infiles[0]);
Detailed step by step instruction for running this example is illustrated here.