Difference between revisions of "ALPS 2 Tutorials:DWA-02 Density Profile"

From ALPS
Jump to: navigation, search
(Density profile)
Line 1: Line 1:
 
= Density profile =
 
= Density profile =
  
The DWA code is itself marvellous in being able to handle very robust simulation sizes. As a first example, we first look at one specific parameter input that resembles the experiments.
+
As a second example of the dwa QMC code, we will study the density profile of an optical lattice in an harmonic trap which resembles the experiment
 +
 
 +
== Mimicking the Bloch's experiment ==
 +
 
 +
=== Preparing and running the simulation from the command line ===
 +
 
 +
The parameter file [http://alps.comp-phys.org/static/tutorials2.1.0/dwa-01-bosons/parm1a parm1a] sets up Monte Carlo simulations of the quantum Bose Hubbard model on a square lattice with 4x4 sites for a couple of hopping parameters (t=0.01, 0.02, ..., 0.1) using the dwa code.
 +
 
 +
LATTICE="inhomogeneous simple cubic lattice"
 +
L=100
 +
 +
MODEL='boson Hubbard"
 +
Nmax=20
 +
 +
t=1.
 +
U=8.11
 +
mu="4.05 - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))"
 +
 
 +
THERMALIZATION=50000
 +
SWEEPS=200000
 +
SKIP=100
 +
 +
{ T=1. }
 +
 
 +
Using the standard sequence of commands you can run the simulation using the quantum dwa code
 +
 
 +
parameter2xml parm2a
 +
dwa --Tmin 5 --write-xml parm2a.in.xml
 +
 
 +
=== Preparing and running the simulation from Python ===
  
 
Step 1: The usual business
 
Step 1: The usual business

Revision as of 00:12, 14 September 2013

Density profile

As a second example of the dwa QMC code, we will study the density profile of an optical lattice in an harmonic trap which resembles the experiment

Mimicking the Bloch's experiment

Preparing and running the simulation from the command line

The parameter file parm1a sets up Monte Carlo simulations of the quantum Bose Hubbard model on a square lattice with 4x4 sites for a couple of hopping parameters (t=0.01, 0.02, ..., 0.1) using the dwa code.

LATTICE="inhomogeneous simple cubic lattice"
L=100

MODEL='boson Hubbard"
Nmax=20

t=1.
U=8.11
mu="4.05 - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))"
 
THERMALIZATION=50000
SWEEPS=200000
SKIP=100

{ T=1. }

Using the standard sequence of commands you can run the simulation using the quantum dwa code

parameter2xml parm2a
dwa --Tmin 5 --write-xml parm2a.in.xml

Preparing and running the simulation from Python

Step 1: The usual business

import pyalps;
import pyalps.dwa;

Step 2: Preparing the parameter file

tof_phase = pyalps.dwa.tofPhase(time_of_flight=15.5, wavelength=[843,765,765], mass=86.99)

params=[]
params.append(

  { 'LATTICE'         : 'inhomogeneous simple cubic lattice'   # Refer to <lattice.xml> from ALPS Lattice Library
  , 'MODEL'           : 'boson Hubbard'                        # Refer to <model.xml>   from ALPS Model Library

  , 'L'               : 100                # Length aspect of lattice               
  , 'Nmax'            : 20                 # Maximum number of bosons on each site

  , 't'               : 1.                 # Hopping
  , 'U'               : 8.11               # Onsite Interaction
  , 'T'               : 1.                 # Temperature
  , 'mu_homogeneous'  : 4.05               # Chemical potential (homogeneous) 
  , 'mu'              : 'mu_homogeneous - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))'

  , 'tof_phase'       :  str(tof_phase) 
  
  , 'SWEEPS'          : 100000             # Total number of sweeps
  , 'SKIP'            : 100                # Number of sweeps before measurement (You don't need to measure too often!)  
  }

)
h5_infiles = pyalps.writeInputH5Files("parm9f",params);

or simply if existent,

h5_infiles = pyalps.getInputH5Files(prefix='parm9f');

Have a preliminary taste:

pyalps.runApplication('dwa', h5_infiles[0]);

Detailed step by step instruction for running this example is illustrated here.