Difference between revisions of "ALPS 2 Tutorials:DWA-02 Density Profile"
From ALPS
(→Preparing and running the simulation from the command line) |
(→Preparing and running the simulation from the command line) |
||
Line 28: | Line 28: | ||
parameter2xml parm2a | parameter2xml parm2a | ||
− | dwa | + | dwa parm2a.in.xml |
=== Preparing and running the simulation from Python === | === Preparing and running the simulation from Python === |
Revision as of 00:15, 14 September 2013
Contents
Density profile
As a second example of the dwa QMC code, we will study the density profile of an optical lattice in an harmonic trap which resembles the experiment
Mimicking the Bloch's experiment
Preparing and running the simulation from the command line
The parameter file parm2a sets up Monte Carlo simulation of a 1003 optical lattice trap that mimicks the Bloch experiment:
LATTICE="inhomogeneous simple cubic lattice" L=100 MODEL='boson Hubbard" Nmax=20 t=1. U=8.11 mu="4.05 - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))" THERMALIZATION=50000 SWEEPS=200000 SKIP=100 { T=1. }
Using the standard sequence of commands you can run the simulation using the quantum dwa code
parameter2xml parm2a dwa parm2a.in.xml
Preparing and running the simulation from Python
Step 1: The usual business
import pyalps; import pyalps.dwa;
Step 2: Preparing the parameter file
tof_phase = pyalps.dwa.tofPhase(time_of_flight=15.5, wavelength=[843,765,765], mass=86.99) params=[] params.append( { 'LATTICE' : 'inhomogeneous simple cubic lattice' # Refer to <lattice.xml> from ALPS Lattice Library , 'MODEL' : 'boson Hubbard' # Refer to <model.xml> from ALPS Model Library , 'L' : 100 # Length aspect of lattice , 'Nmax' : 20 # Maximum number of bosons on each site , 't' : 1. # Hopping , 'U' : 8.11 # Onsite Interaction , 'T' : 1. # Temperature , 'mu_homogeneous' : 4.05 # Chemical potential (homogeneous) , 'mu' : 'mu_homogeneous - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))' , 'tof_phase' : str(tof_phase) , 'SWEEPS' : 100000 # Total number of sweeps , 'SKIP' : 100 # Number of sweeps before measurement (You don't need to measure too often!) } )
h5_infiles = pyalps.writeInputH5Files("parm9f",params);
or simply if existent,
h5_infiles = pyalps.getInputH5Files(prefix='parm9f');
Have a preliminary taste:
pyalps.runApplication('dwa', h5_infiles[0]);
Detailed step by step instruction for running this example is illustrated here.