ALPS 2 Tutorials:MC-01 Equilibration
From ALPS
Contents
Equilibration
Rule of thumb: All Monte Carlo simulations have to be equilibrated before taking measurements.
Example: Quantum Monte Carlo (directed worm algorithm) simulations
As an example, we consider a Quantum Monte Carlo simulation implemented in the directed worm algorithm for boson Hubbard model in square lattice geometry of size 202.
Using command line
The parameter file parm1a:
LATTICE="square lattice" MODEL="boson Hubbard" L=20 Nmax=20 t=1. U=16. mu=32. THERMALIZATION=10000 SWEEPS=100000 SKIP=400 {T=1.0}
We first convert the input parameters to XML and then run the application dwa:
parameter2xml parm1a dwa parm1a.in.xml
To check for equilibration, we need to look at
h5dump -g /simulation/results/Density parm1a.task1.out.h5
Using Python
The following describes what is going on within the script file tutorial1a.py.
The headers:
import pyalps
Set up a python list of parameters (python) dictionaries:
parms = [{ 'LATTICE' : "square lattice", 'MODEL' : "boson Hubbard", 'L' : 20, 'Nmax' : 20, 't' : 1., 'U' : 16., 'mu' : 32., 'T' : 1., 'THERMALIZATION' : 10000, 'SWEEPS' : 100000, 'SKIP' : 400 }]
Write into XML input file:
input_file = pyalps.writeInputFiles('parm1a',parms)
and run the application dwa:
pyalps.runApplication('dwa', input_file, Tmin=10, writexml=True)