Difference between revisions of "Documentation:Monte Carlo Equilibration"

From ALPS
Jump to: navigation, search
(Theory)
(Theory)
Line 12: Line 12:
 
\left(  
 
\left(  
 
\begin{array}{cc}  
 
\begin{array}{cc}  
1 & 2
+
N              & \sum_i x_i    \\
 +
\sum_i x_i & \sum_i x_i^2
 
\end{array}
 
\end{array}
 
\right)
 
\right)
 +
\left(\beta_0 \\ \beta_1\right) =
 +
\left(\sum_i y_i \\ \sum_i x_i y_i \right)
 
</math>
 
</math>

Revision as of 12:00, 9 September 2013

Monte Carlo equilibration

Theory

We have a timeseries of N measurements obtained from a Monte Carlo simulation, i.e. y_0,y_1,\cdots,y_{N-1}.

Suppose \bar{y}_i = \beta_0 + \beta_1 x_i (s.t. i = 0, 1, \cdots, N-1) is the least-squares best fitted line, we attempt to minimize  S = \sum_i (y_i - \bar{y}_i)^2 w.r.t. \beta_0 and  \beta_1.

\frac{\partial S}{\partial \beta_0 } = 0 , \frac{\partial S}{\partial \beta_1 } = 0  :

Failed to parse (Missing <code>texvc</code> executable. Please see math/README to configure.): \left( \begin{array}{cc} N & \sum_i x_i \\ \sum_i x_i & \sum_i x_i^2 \end{array} \right) \left(\beta_0 \\ \beta_1\right) = \left(\sum_i y_i \\ \sum_i x_i y_i \right)