Difference between revisions of "Documentation:Monte Carlo Equilibration"
From ALPS
(→Theory) |
(→Theory) |
||
Line 55: | Line 55: | ||
\Rightarrow \beta_1 = \frac{N \sum_i x_i y_i - \sum_i x_i \sum_i y_i}{N\sum_i x_i^2 - (\sum_i x_i)^2} | \Rightarrow \beta_1 = \frac{N \sum_i x_i y_i - \sum_i x_i \sum_i y_i}{N\sum_i x_i^2 - (\sum_i x_i)^2} | ||
</math> | </math> | ||
+ | |||
<math> | <math> | ||
\Rightarrow \beta_1 = \frac{\sum_i (x_i - \bar{x}_i)( y_i - \bar{y}_i) }{\sum_i (x_i - \bar{x}_i)^2} \,\,\,\,\, \left( = \frac{s_{xy}}{s_{xx}} \right) | \Rightarrow \beta_1 = \frac{\sum_i (x_i - \bar{x}_i)( y_i - \bar{y}_i) }{\sum_i (x_i - \bar{x}_i)^2} \,\,\,\,\, \left( = \frac{s_{xy}}{s_{xx}} \right) | ||
</math> | </math> |
Revision as of 12:12, 9 September 2013
Monte Carlo equilibration
Theory
We have a timeseries of N measurements obtained from a Monte Carlo simulation, i.e. .
Suppose (s.t.
) is the least-squares best fitted line, we attempt to minimize
w.r.t.
and
.
,
: