Difference between revisions of "Documentation:Monte Carlo Equilibration"
From ALPS
(→Synposis) |
(→Synposis) |
||
Line 107: | Line 107: | ||
|| argument | || argument | ||
|| default | || default | ||
+ | || type | ||
|| remark | || remark | ||
+ | |- | ||
+ | || outfile | ||
+ | || -- | ||
+ | || ALPS hdf5 output file(name) | ||
+ | || Python str | ||
+ | || -- | ||
|- | |- | ||
|| confidenceInterval | || confidenceInterval | ||
|| 0.01 | || 0.01 | ||
|| <math> \mathrm{tolerance} = \frac{X^\mathrm{(fit)} (t_\mathrm{final}) - X^\mathrm{(fit)} (t_\mathrm{initial})}{\bar{X}} </math> | || <math> \mathrm{tolerance} = \frac{X^\mathrm{(fit)} (t_\mathrm{final}) - X^\mathrm{(fit)} (t_\mathrm{initial})}{\bar{X}} </math> | ||
+ | || | ||
|- | |- | ||
|| simplified | || simplified | ||
|| False | || False | ||
|| shall we combine the checks of all observables as 1 final boolean answer? | || shall we combine the checks of all observables as 1 final boolean answer? | ||
+ | || | ||
|- | |- | ||
|| includeLog | || includeLog | ||
|| False | || False | ||
|| shall we print the detailed log? | || shall we print the detailed log? | ||
+ | || | ||
|} | |} |
Revision as of 14:22, 10 September 2013
Contents
Monte Carlo equilibration
Theory
We have a timeseries of N measurements obtained from a Monte Carlo simulation, i.e. .
Suppose (s.t.
) is the least-squares best fitted line, we attempt to minimize
w.r.t.
and
.
,
:
Slope of best-fitted line
Error in slope of best-fitted line
Denoting , we have:
Hypothesis testing
Using the standard z-test, we reject at confidence interval
if
Practice
Synposis
pyalps.checkNonSteadyState(outfile, observables, confidenceInterval=0.63, simplified=False, includeLog=False)
argument | default | type | remark | |
outfile | -- | ALPS hdf5 output file(name) | Python str | -- |
confidenceInterval | 0.01 | ![]() |
||
simplified | False | shall we combine the checks of all observables as 1 final boolean answer? | ||
includeLog | False | shall we print the detailed log? |