# Difference between revisions of "Documentation:Monte Carlo Equilibration"

From ALPS

(→Synposis) |
(→Arguments) |
||

Line 7: | Line 7: | ||

pyalps.checkSteadyState(outfile, observables, confidenceInterval, simplified=False, includeLog=False) | pyalps.checkSteadyState(outfile, observables, confidenceInterval, simplified=False, includeLog=False) | ||

− | + | <br/> | |

{| border="1" cellpadding="5" cellspacing="0" align="center" | {| border="1" cellpadding="5" cellspacing="0" align="center" |

## Revision as of 11:34, 16 September 2013

## Contents

# Equilibration in Monte Carlo simulations

## Description

### Synposis 1

pyalps.checkSteadyState(outfile, observables, confidenceInterval, simplified=False, includeLog=False)

argument | default | type | remark |

outfile | - | Python str | ALPS hdf5 output file(name) |

observables | - | (list of ) Python str | (list of) measurement observable(s) |

confidenceInterval | - | Python float | confidence interval in which steady state has been reached |

simplified | False | Python bool | shall we combine the checks of all observables as 1 final boolean answer? |

includeLog | False | Python bool | shall we print the detailed log? |

## Theory

We have a timeseries of N measurements obtained from a Monte Carlo simulation, i.e. .

Suppose (s.t. ) is the least-squares best fitted line, we attempt to minimize w.r.t. and .

, :

### Slope of best-fitted line

### Error in slope of best-fitted line

Denoting , we have:

### Hypothesis testing

Using the standard z-test, we reject at confidence interval if