DWA-03 Time of Flight Images
As a third example of the directed worm algorithm QMC code, we shall study the time-of-flight images of an optical lattice in an harmonic trap.
Preparing and running the simulation from Python
import pyalps
import pyalps.dwa
parms = [
{
'LATTICE' : 'inhomogeneous simple cubic lattice' ,
'L' : 120 ,
'MODEL' : 'boson Hubbard' ,
'Nmax' : 20 ,
't' : 1. ,
'U' : 8.11 ,
'mu' : '4.05 - (0.0073752*(x-(L-1)/2.)*(x-(L-1)/2.) + 0.0036849*(y-(L-1)/2.)*(y-(L-1)/2.) + 0.0039068155*(z-(L-1)/2.)*(z-(L-1)/2.))' ,
'T' : 1. ,
'THERMALIZATION' : 1500 ,
'SWEEPS' : 60000 ,
'SKIP' : 50 ,
'tof_phase' : pyalps.dwa.tofPhase(time_of_flight=15.5, wavelength=[765,843,843], mass=86.99) ,
'MEASURE[Green Function]': 1
}
]
input_file = pyalps.writeInputFiles('parm3a', parms)
res = pyalps.runApplication('dwa', input_file)
Evaluating the simulation and preparing plots using Python
We load the results for the Green function from all output files starting with parm3a
.
import pyalps
data = pyalps.loadMeasurements(pyalps.getResultFiles(prefix='parm3a'), 'Green Function');
To visualize the Green function:
import pyalps.plot as aplt;
aplt.plot3D(data, layer=0)
q_x = q_x[0:q_x.shape[0]:mag, 0:q_x.shape[1]:mag];
q_y = q_y[0:q_y.shape[0]:mag, 0:q_y.shape[1]:mag];
tof_image = tof_image[1:tof_image.shape[0]:mag, 0:tof_image.shape[1]:mag] * mag * mag
tof_image[tof_image < 0] = 0